Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38712125

RESUMO

The lateral septum (LS) is a midline, subcortical structure, which regulates social behaviors that are frequently impaired in neurodevelopmental disorders including schizophrenia and autism spectrum disorder. Mouse studies have identified neuronal populations within the LS that express a variety of molecular markers, including vasopressin receptor, oxytocin receptor, and corticotropin releasing hormone receptor, that control specific facets of social behavior. Despite its critical role in the regulation of social behavior and notable gene expression patterns, comprehensive molecular profiling of the human LS has not been performed. Here, we conducted single nucleus RNA-sequencing (snRNA-seq) to generate the first transcriptomic profiles of the human LS using postmortem human brain tissue samples from 3 neurotypical donors. Our analysis identified 4 transcriptionally distinct neuronal cell types within the human LS that are enriched for TRPC4 , the gene encoding Trp-related protein 4. Differential expression analysis revealed a distinct LS neuronal cell type that is enriched for OPRM1 , the gene encoding the µ-opioid receptor. Leveraging recently collected mouse LS snRNA-seq datasets, we also conducted a cross-species analysis. Our results demonstrate that TRPC4 enrichment in the LS is highly conserved between human and mouse, while FREM2 , which encodes FRAS1 related extracellular matrix protein 2, is enriched only in the human LS. Together, these results highlight transcriptional heterogeneity of the human LS, and identify robust marker genes for the human LS.

2.
Transl Psychiatry ; 14(1): 52, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263132

RESUMO

The lateral septum (LS), a GABAergic structure located in the basal forebrain, is implicated in social behavior, learning, and memory. We previously demonstrated that expression of tropomyosin kinase receptor B (TrkB) in LS neurons is required for social novelty recognition. To better understand molecular mechanisms by which TrkB signaling controls behavior, we locally knocked down TrkB in LS and used bulk RNA-sequencing to identify changes in gene expression downstream of TrkB. TrkB knockdown induces upregulation of genes associated with inflammation and immune responses, and downregulation of genes associated with synaptic signaling and plasticity. Next, we generated one of the first atlases of molecular profiles for LS cell types using single nucleus RNA-sequencing (snRNA-seq). We identified markers for the septum broadly, and the LS specifically, as well as for all neuronal cell types. We then investigated whether the differentially expressed genes (DEGs) induced by TrkB knockdown map to specific LS cell types. Enrichment testing identified that downregulated DEGs are broadly expressed across neuronal clusters. Enrichment analyses of these DEGs demonstrated that downregulated genes are uniquely expressed in the LS, and associated with either synaptic plasticity or neurodevelopmental disorders. Upregulated genes are enriched in LS microglia, associated with immune response and inflammation, and linked to both neurodegenerative disease and neuropsychiatric disorders. In addition, many of these genes are implicated in regulating social behaviors. In summary, the findings implicate TrkB signaling in the LS as a critical regulator of gene networks associated with psychiatric disorders that display social deficits, including schizophrenia and autism, and with neurodegenerative diseases, including Alzheimer's.


Assuntos
Doenças Neurodegenerativas , Proteínas Quinases , Humanos , Transdução de Sinais , Inflamação , RNA
3.
Neuropsychopharmacology ; 49(3): 521-531, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37563281

RESUMO

Sustained attention, the ability to focus on an activity or stimulus over time, is significantly impaired in many psychiatric disorders, and there remains a major unmet need in treating impaired attention. Continuous performance tests (CPTs) were developed to measure sustained attention in humans, non-human primates, rats, and mice, and similar neural circuits are engaged across species during CPT performance, supporting their use in translational studies to identify novel therapeutics. Here, we identified electrophysiological correlates of attentional performance in a touchscreen-based rodent CPT (rCPT) in the locus coeruleus (LC) and prelimbic cortex (PrL), two inter-connected regions that are implicated in attentional processes. We used viral labeling and molecular techniques to demonstrate that neural activity is recruited in LC-PrL projections during the rCPT, and that this recruitment increases with cognitive demand. We implanted male mice with depth electrodes within the LC and PrL for local field potential (LFP) recordings during rCPT training, and identified an increase in PrL delta and theta power, and an increase in LC delta power during correct responses in the rCPT. We also found that the LC leads the PrL in theta frequencies during correct responses while the PrL leads the LC in gamma frequencies during incorrect responses. These findings may represent translational biomarkers that can be used to screen novel therapeutics for drug discovery in attention.


Assuntos
Locus Cerúleo , Roedores , Ratos , Camundongos , Humanos , Masculino , Animais , Atenção/fisiologia , Córtex Cerebral , Fenômenos Eletrofisiológicos
4.
bioRxiv ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37131757

RESUMO

Sustained attention, the ability to focus on an activity or stimulus over time, is significantly impaired in many psychiatric disorders, and there remains a major unmet need in treating impaired attention. Continuous performance tests (CPTs) were developed to measure sustained attention in humans, non-human primates, rats, and mice, and similar neural circuits are engaged across species during CPT performance, supporting their use in translational studies to identify novel therapeutics. Here, we identified electrophysiological correlates of attentional performance in a touchscreen-based rodent CPT (rCPT) in the locus coeruleus (LC) and anterior cingulate cortex (ACC), two inter-connected regions that are implicated in attentional processes. We used viral labeling and molecular techniques to demonstrate that neural activity is recruited in LC-ACC projections during the rCPT, and that this recruitment increases with cognitive demand. We implanted male mice with depth electrodes within the LC and ACC for local field potential (LFP) recordings during rCPT training, and identified an increase in ACC delta and theta power, and an increase in LC delta power during correct responses in the rCPT. We also found that the LC leads the ACC in theta frequencies during correct responses while the ACC leads the LC in gamma frequencies during incorrect responses. These findings may represent translational biomarkers that can be used to screen novel therapeutics for drug discovery in attention.

5.
Am J Psychiatry ; 180(4): 305-317, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36128683

RESUMO

OBJECTIVE: Deficits in social cognition consistently underlie functional disabilities in a wide range of psychiatric disorders. Neuroimaging studies have suggested that the anterior insula is a "common core" brain region that is impaired across neurological and psychiatric disorders, which include social cognition deficits. Nevertheless, neurobiological mechanisms of the anterior insula for social cognition remain elusive. This study aims to fill this knowledge gap. METHODS: To determine the role of the anterior insula in social cognition, the authors manipulated expression of Cyp26B1, an anterior insula-enriched molecule that is crucial for retinoic acid degradation and is involved in the pathology of neuropsychiatric conditions. Social cognition was mainly assayed using the three-chamber social interaction test. Multimodal analyses were conducted at the molecular, cellular, circuitry, and behavioral levels. RESULTS: At the molecular and cellular level, anterior insula-mediated social novelty recognition is maintained by proper activity of the layer 5 pyramidal neurons, for which retinoic acid-mediated gene transcription can play a role. The authors also demonstrate that oxytocin influences the anterior insula-mediated social novelty recognition, although not by direct projection of oxytocin neurons, nor by direct diffusion of oxytocin to the anterior insula, which contrasts with the modes of oxytocin regulation onto the posterior insula. Instead, oxytocin affects oxytocin receptor-expressing neurons in the dorsal raphe nucleus, where serotonergic neurons are projected to the anterior insula. Furthermore, the authors show that serotonin 5-HT2C receptor expressed in the anterior insula influences social novelty recognition. CONCLUSIONS: The anterior insula plays a pivotal role in social novelty recognition that is partly regulated by a local retinoic acid cascade but also remotely regulated by oxytocin via a long-range circuit mechanism.


Assuntos
Ocitocina , Comportamento Social , Humanos , Ocitocina/metabolismo , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...